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Abstract— An algorithm for solving an inverse problem in elastostatics is developed. In this problem,
the location and shape of the cavity are unknown. Instead, extra experimental data are provided at
several internal points in the structure. Through an iterative process, the unknown boundary is
determined by using the boundary element method coupled with nonlinear optimization technique.
Some illustrated numerical examples are presented to demonstrate the method. Through these
examples the effects of the error in the internal displacement data and of the number of measurement
points and their locations are examined.

1. INTRODUCTION

The definition of an inverse problem is described by Tikhonov and Arsenin (1977) as follows.
Formally, to solve an inverse problem means to discover the cause of a known result.
Hence, all problems of the interpretation of observed data are actually inverse. Inverse
problems in solid mechanics arise when insufficient boundary conditions are prescribed,
but additional information on the solution, such as displacements or strains at specified
internal points in the body, is given. These measurements are often performed at internal
points in the body due, for example, to difficulties in placing sensors on boundaries where
the specimen is in contact with another body. Inverse problems bring together the best
features of both analysis and testing. Ideally, using known test data and approaching the
problem inversely can result in the actual determination of boundary conditions.

Inverse deformation problems have been discussed in the field of structural dynamics
by Trujillo (1978), thermoelasticity by Grysa et al. (1981), vibration problems by Gladwell
(1986), nondestructive measurement of plastic strains by Mura et al. (1986), and over-
prescribed elastostatics by Maniatty et al. (1989) and by Yeih et al. (1992). An overview
of the inverse problems arising in the fields of mechanics and fracture of solids and structures
is presented by Kubo (1988).

In recent years, the main emphasis of inverse problems has been concentrated in the
area of nondestructive inspection involved in finding flaws or defects included in structural
components. The uniqueness of the solution has been established by Ramm (1986),
Friedman and Vogelius (1989), and Kubo et al. (1989). Inverse shape determination problem
has been performed by Tanaka and Masuda (1986). In this reference, a Taylor series
expansion of the boundary integral equation is used to obtain the unknown boundary by
distorting a guessed boundary in an iterative process. Internal stresses are used as reference
data which are obtaind by experiment. This method requires a large number of data points
and additional care in evaluating singular integrals which appear due to the differentiation
in the Taylor expansion. Murai and Kagawa (1986) employ boundary element iterative
techniques by using boundary impedance as reference data to determine interface boundary
between two domains with different conductivity for application to impedance plethys-
mography. In the above papers, there are no discussions about the stability of solutions.
Nishimura and Kobayashi (1991) apply the boundary element method in crack identi-
fication by using boundary measurement of displacements and slopes. However, it has been
shown to require solutions of certain hypersingular integral equations in the process of
minimization. Special regularization techniques which are different from Tikhonov’s regu-
larization method are proposed to solve these integral equations. Das (1991) develops an
algorithm for the flaw identification problem in steady-state heat conduction by using
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boundary temperatures as reference data. This method does not involve evaluation of
singular integrals. However, the method requires a large number of iterations and does not
tolerate experimental errors. This deficiency makes it impossible for practical application
since the real experimental data usually contain some amount of unspecified measurement
errors. Dulikravich and Kosovic (1992) use boundary element method and Davidon-
Fletcher—Powell optimization for void identification in heat conduction problem. But two
types of extra data must be specified, i.e. surface temperatures and heat fluxes.

Nondestructive cavity identification is one of the most important issues in evaluating
structural safety and life-time of operating plants and structures. Various nondestructive
examination methods for cavity detection have been researched and developed so far.
Nevertheless, much work is still required in improving accuracy and efficiency for further
practical application. The present paper will start with the precise definition of the cavity
identification problem in elastostatics. Then, the nonlinear optimization technique used for
the solution will be presented along with specific numerical examples examining the effect
of the error in the measurement data as well as of the number and position of the measure
points.

2. STATEMENT OF THE PROBLEM

Consider a plate D as shown in Fig. 1. It is assumed that the material properties of the
plate are homogeneous, isotropic and linearly elastic. Some parts of the boundary, | D|,, are
traction prescribed and the rest, |D|,, are dispilacement prescribed. Also consider that the
displacements are obtained experimentally at several selected internal points. If the plate
contains a cavity Q, the measured displacements will be different from those for a plate
without a cavity. Conversely, this difference in displacement indicates the presence of the
cavity. Further, one can use the prescribed displacement and traction conditions on
|D|,+ 1D}, and the additional experimental information, and attempt to determine the
location and shape of the cavity.

The displacements at some internal points indicated by the dots in Fig. 1 can be
obtained numerically by the boundary element method, and also experimentally, for
example, by the Moiré method. Ideally, the values obtained by these two methods should
match within certain acceptable limits. However, the boundary element method does not
give correct values of the displacements at the internal points when there is a cavity at an
unknown location, of unknown shape and of unknown size. Because the boundary element
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Fig. 1. Plate with an elliptical cavity. Thick solid curve—real cavity, thin solid curve— guessed
cavity, dots—sensors.
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method needs the correct boundaries of D and the boundary values of displacement and
traction. In this paper we have assumed that there could only be one cavity Q with traction-
free boundary || in the plate. Our aim is to determine |Q[ from the measured displacement
data at some selected points. The scheme for solving this inverse problem is described in
the following section.

3. BOUNDARY ELEMENT METHOD AND NONLINEAR OPTIMIZATION TECHNIQUE

The differential equation which governs linear elastostatics without body forces is
ijmnum,nj = Os in D, (1)

where C,,,., are the elastic moduli and u, is the displacement. Equation (1) must be
accompanied by boundary conditions

tk = ijmnum,nnj = t_ln on IDIU

U = 07 on |D l us

., =0, on|Q )]
where ¢ is the traction, #; is the outward-pointing normal vector and f; is the prescribed

value for traction. The differential equation can be converted into the boundary integral
equation (Kinoshita and Mura, 1956 ; Kitahara, 1985),

crty (X)) = L)I [Gr (%, X) 1 (X) — Hye (X, X1 (x)] dis(x), (3)

which gives the value of displacement at any point x” when the boundary values of dis-
placement and traction on |D| = |D|,+|D],+ |Q| are given. The coeflicient ¢, is given as

e =0, if x’ lies outside D+ |D|,

e =1, if x’ lies inside D,

¢ = 304, ifx’lieson |D|, 6
where |D| is smooth at x’. §, is the Kronecker symbol. The two-point functions G (x, x’)

and Hj,(x,x’) are displacement and traction components of the Kelvin’s fundamental
solutions for the plane strain problems displayed as follows :

nN_ (o — x7) O — xi)
Gu(x,X) _m8nu(l—v)[_(3_4v)5lkln R1+*—T;l>_‘—— s &)
n_ 1 1—2v 2(x;—x))(x —xz) | OR,
H”‘("”‘)“4n(1—v){_[ R, On+ R} on
X;— X} X — Xp
+(1—2v)[ ’R% " — "R% kn,:l}, (©6)
where

R} = (1 —x1) 2+ (x,—x5%)3,

n, and n, are the direction cosines of the normal with respect to x, and x,. Plane stress
problems can be solved by using the equivalent Poisson’s ratio v’ = v/(1+v). The value of
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the shear modulus u remains the same. Substituting the boundary conditions (2), we write
eqn (3) as

ety (X)) = J‘ (G (X, XV (X) — Hy(x, X )u(x)] ds(x)

121

+Jw* [Gr(x, x) 1 (x)] dS(X)**L} [H (% X ()} ds(x). - (7)

The first step of the computational scheme is to assume a cavity boundary |Q*|. Then
(7) is written as

cruf(x’) = J [Gr (%, X)) (X) — Hy (%, X)uF(x)] ds(x)

1

+jn [Gu(x, Xt E(x)] ds(x) — f [Hy (x, XYuE(x)] ds(x),  (8)
D, 1

where uf and ¢ ¥ are u, and £, when |€] is assumed to be [Q2*|. These values depend not only
on X’ but also on the choice of parameter z describing [Q*|. Let

FrX',z) = u}(x), 9

where x” are point vectors of M number of selected points inside D and z is a vector with
N components, which defines |Q*|. The objective is to fit the mathematical function F¥(x’, z)
to the experimental data u,(x") by varying z. When F}(x’, z) is nonlinear in z which is the
variable of the optimization problem, this type of problem is called nonlinear regression.
Generally 2M > N and the system is then said to be overdetermined; the case 2M < N
characterizes an underdetermined system.

It is necessary to define more precisely what we mean by the best fit. For most
overdetermined systems it will not be possible to find z such that F}*(x’,z) matches the
experimental data at all points. The difference between u,(x’) and F}¥(x’,z) is called a
residual r,,

iz = FEX 2y —u(x’™), I=12, m=1,..., M. (10)

Finally, the least squares best fit is obtained by minimizing the function which is the
. sum of the squares of the residuals

M

Y @t 1=1,2, (I

m=1

with respect to z. Squares are taken to avoid cancellation between residuals of opposite
sign. The residuals are nonlinear functions of z, therefore this is a nonlinear least squares
problem. Altogether, one can evaluate 2M quantities (/7', [ = 1,2;m = 1,2,..., M) for the
M number of selected points. During the minimization process, the quantity |Q*| is modified,
and at the conclusion of the process |Q*| converges to |Q}. The details of the algorithm for
updating the unknowns at the end of each cycle are presented as follows.

The real unknown cavity, ||, could be of any general shape. However, in this demon-
strative scheme, all cavities are assumed to be elliptical to reduce the degrees of freedom
(DOF) and computation time, Moreover, the elliptical shape covers a wide range of shapes
from circular holes to straight cracks. Instead of considering the coordinates of the end
points of elements as the unknowns, the location of the center (zy, z,), the semi-major axis
z, the semi-minor axix z, and the angular orientation z;s of the semi-major axis with the
x,-axis are considered as the ultimate unknowns of the problem (DOF = 5).
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The nonlinear least squares problem is stated as follows:

Given R:RY—-R™, M2 N,

M
find zeRY forwhich Y [”(2)]* is minimized, (12)

m= 1

where R = R, or R,, r = r, or r,, R" denotes N-dimensional Euclidean space and r"(z) is
the mth component of R(z). Let’s define the Jacobian and Hessian of R at z before we try
to solve problem (12).

Definition. A continuous function R:R” —» RM is continuously differentiable at ze R" if
each component function R, i = 1,..., M is continuously differentiable at z. The derivative
of R at z is called the Jacobian (matrix) of R at z, and its transpose is called the gradient
of R at z. If the N? second partial derivatives of R also exist and are continuous, the matrix
containing them is called the Hessian of R at z. The common notations are:

10 = B0 _ wrayr, (13)
z
H@ = V'R@ = I, (14)

Now suppose that we have z, which corresponds to initial guess and some estimate J,
of the maximum length of a successful step we are likely to be able to take from z.. The
step Az that solves

min R(z. +Az) = [|R(zc) +J(z.)Az]|,

AzeRY

subject to | Az]; < d., (15)

is the best step of maximum length §, from z.. |- || ; designates the [, norm. Problem (15) is
the basis of the model-trust region approach to minimization. Its solution is given in the
following lemma. The name comes from viewing J, as providing a region in which we can
trust R(z.+ Az) to adequately model R{(z.).

Lemma. Let R:RY > RY be twice continuously differentiable, the Hessian of R at z.,
H_ e R"*¥ be symmetric and positive definite, and let I be the unit matrix of order N. Then
the solution to problem (15) is

Az(p)) = —[He+p0]" 'R, (16)

where g, = 0 if 6. > |H7 'JIR. ||, and p. > 0 otherwise. R., J. and H, are the function
value, the Jacobian and the Hessian calculated at the current point z, respectively.

The proof of the lemma is provided by Dennis and Schnabel (1983). Formula (16) was
first suggested by Levenberg (1944) and Marquardt (1963) and is known as the Levenberg--
Marquardt method. The implementation (16) as a trust region algorithm, where g and 6,
are chosen by the techniques of the locally constrained optimal step and of updating the
trust region, is due to Moré (1977). Numerical results illustrating the behavior of the
algorithm are presented in the following section.

4. NUMERICAL EXAMPLES

The main jobs when solving an inverse problem are given as follows. These will be
illustrated by numerical examples.



1584 S.-C. Hsien and T. Mura

(i) Find out whether the chosen model FF{x’,z) is compatible with the experimental
data #,(x), i.e. find such a function which is characterized by a vector z that

FFx',z) —u{x") € 0, (17
under the natural condition that
z¥ -z as 9,—0, (18)

where z* is the approximate solution and §, is the accuracy of measurement.

(ii) Determine, if possible, the errors of the approximate solutions within the adopted
model, i.e. estimate the difference between z* and z.

Consider a plate D as shown in Fig. 1 subject to a uniform tension 7 = 100 MPa. The
2100 x 1100 mm plate is 10 mm thick, and it is made of aluminum with shear modulus
1= 26,520 MPa and Poisson’s ratio v = 0.3, The entire plate is modeled with 64 constant
elements on outer boundary ; 48 constant elements on the boundary of the internal cavity.
In this section the results for elliptical and nonelliptical cavity problems are presented.
Through these examples, the convergence properties of the computational scheme will be
demonstrated.

Ideally one must obtain displacements at selected points from experiments, however,
for want of any experimental data, the direct boundary element method solutions were used
as input for the inverse algorithm.

Consider the problem of finding a 457-inclined elliptical cavity with semi-major axis
200 mm and semi-minor axis 50 mm located at (650 mm, 450 mm). Computation begins
with a guessed cavity *. It converges to the real cavity after 14 iterations by using 26
sensors. The convergent process is plotted in Fig. 2.

The stability of the solution for the proposed algorithm is examined as follows. The
boundary element method solutions are used to generate the internal displacements of all
the internal nodes. These displacements are multiplied by (1 +e x RAN), where ¢ is percent
error and RAN is a random variable on the interval [—1, 1], to play the role of inexact
experimental measurements. Different values of percent error are introduced into internal
displacement data and the effect on the solution is observed. The results are plotted in Fig.
3. For this problem, the distance d of sensor from the boundary is 100 mm. It is of
significance that the errors in shape parameters are linearly proportional to the error in the
internal displacement input.

The effect of the distance d of sensor from the boundary is also observed when constant
error is introduced into the internal displacements by multiplying them by (1+0.02 x RAN).
The results are plotted in Fig. 4. It is also found that using more sensors has no effect on
the solution. In effect, the number of internal points does not affect the solution much, as
long as an underdetermined system does not occur. However, the arrangement of sensors
has a significant effect on the solution. For this example, if half the sensors are placed on
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Fig. 2. Convergent process for elliptical cavity.
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Fig. 3. Effect of error in internal displacement data.

the top and half on the bottom, the computation fails to converge. If half the sensors are
placed on the right and half on the left, the number of iterations increases. Therefore, the
optimum arrangement of sensors is to place them on four sides.

To demonstrate the superior performance of the scheme for a nonelliptical cavity, it
is employed to find a 190 x 50 mm rectangular cavity with centroid at (675 mm, 495 mm).
The algorithm provides a good estimate of the cavity as can be seen from Fig. 5. The
example shows the robustness of the present approach.

5. CONCLUSIONS

A boundary element method formulation with a nonlinear least squares technique has
been shown to be an effective and easy way for the inverse shape determination problems
of elastostatics for which some experimental data are available. The calculation is initiated
from an assumed cavity boundary until a real cavity boundary is achieved so as to match
the displacements measured at some internal points of the plate. Even when one considers
a nonelliptical cavity, one may still use the present approach of assuming the cavity to be
elliptical. Indeed, such an analysis is expected to converge to a cavity sufficiently close to
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Fig. 4. Effect of distance of sensor from boundary with 2% random error in internal displacement
input.
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Fig. 5. Convergent process for rectangular cavity.

the true configuration. One may then use this cavity as a good, and therefore economical,
initial guess in a more sophisticated inversion analysis which allows more degrees of freedom
of the shape. The developed algorithm was found to be insensitive to the number of sensors.
Further, the algorithm does not require additional care in evaluating singular integrals
and can handle problems with measurement errors in input experimental data. These
characteristics make this formulation more practical.

The application of the proposed method can be extended to scattering, heat conduction,
and electromagnetic problems in three dimensions where the number of variables will be
eight if the cavity is assumed to be an ellipsoid. For the extension to the three-dimensional
problem, displacement data on the boundary should be used, since it is not possible to
measure internal displacement in the three-dimensional problem.
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